Appendix A

FAQ #11 and #12: a closer look


  1. How could the WTC towers collapse in only 11 seconds (WTC 1) and 9 seconds (WTC 2)—speeds that approximate that of a ball dropped from similar height in a vacuum (with no air resistance)?

NIST estimated the elapsed times for the first exterior panels to strike the ground after the collapse initiated in each of the towers to be approximately 11 seconds for WTC 1 and approximately 9 seconds for WTC 2. These elapsed times were based on: (1) precise timing of the initiation of collapse from video evidence, and (2) ground motion (seismic) signals recorded at Palisades, N.Y., that also were precisely time-calibrated for wave transmission times from lower Manhattan (see NIST NCSTAR 1-5A).

As documented in Section 6.14.4 of NIST NCSTAR 1, these collapse times show that:

"The structure below the level of collapse initiation offered minimal resistance to the falling building mass at and above the impact zone. The potential energy released by the downward movement of the large building mass far exceeded the capacity of the intact structure below to absorb that energy through energy of deformation.

Since the stories below the level of collapse initiation provided little resistance to the tremendous energy released by the falling building mass, the building section above came down essentially in free fall, as seen in videos. As the stories below sequentially failed, the falling mass increased, further increasing the demand on the floors below, which were unable to arrest the moving mass."

In other words, the momentum (which equals mass times velocity) of the 12 to 28 stories (WTC 1 and WTC 2, respectively) falling on the supporting structure below (which was designed to support only the static weight of the floors above and not any dynamic effects due to the downward momentum) so greatly exceeded the strength capacity of the structure below that it (the structure below) was unable to stop or even to slow the falling mass. The downward momentum felt by each successive lower floor was even larger due to the increasing mass.
From video evidence, significant portions of the cores of both buildings (roughly 60 stories of WTC 1 and 40 stories of WTC 2) are known to have stood 15 to 25 seconds after collapse initiation before they, too, began to collapse. Neither the duration of the seismic records nor video evidence (due to obstruction of view caused by debris clouds) are reliable indicators of the total time it took for each building to collapse completely.

  1. Was there enough gravitational energy present in the WTC towers to cause the collapse of the intact floors below the impact floors? Why weren't the collapses of WTC 1 and WTC 2 arrested by the intact structure below the floors where columns first began to buckle?

Yes, there was more than enough gravitational load to cause the collapse of the floors below the level of collapse initiation in both WTC towers. The vertical capacity of the connections supporting an intact floor below the level of collapse was adequate to carry the load of 11 additional floors if the load was applied gradually and 6 additional floors if the load was applied suddenly (as was the case). Since the number of floors above the approximate floor of collapse initiation exceeded six in each WTC tower (12 floors in WTC 1 and 29 floors in WTC 2), the floors below the level of collapse initiation were unable to resist the suddenly applied gravitational load from the upper floors of the buildings.

Consider a typical floor immediately below the level of collapse initiation and conservatively assume that the floor is still supported on all columns (i.e., the columns below the intact floor did not buckle or peel off due to the failure of the columns above). Consider further the truss seat connections between the primary floor trusses and the exterior wall columns or core columns. The individual connection capacities ranged from 94,000 pounds to 395,000 pounds, with a total vertical load capacity for the connections on a typical floor of 29,000,000 pounds (see Section 5.2.4 of NIST NCSTAR 1-6C). The total floor area outside the core was approximately 31,000 square feet, and the average load on a floor under service conditions on Sept. 11, 2001, was 80 pounds per square foot. Thus, the total vertical load on a floor outside the core can be estimated by multiplying the floor area (31,000 square feet) by the gravitational load (80 pounds per square foot), which yields 2,500,000 pounds (this is a conservative load estimate since it ignores the weight contribution of the heavier mechanical floors at the top of each WTC tower). By dividing the total vertical connection capacity (29,000,000 pounds) of a floor by the total vertical load applied to the connections (2,500,000 pounds), the number of floors that can be supported by an intact floor is calculated to be a total of 12 floors or 11 additional floors.

This simplified and conservative analysis indicates that the floor connections could have carried only a maximum of about 11 additional floors if the load from these floors were applied statically. Even this number is (conservatively) high, since the load from above the collapsing floor is being applied suddenly. Since the dynamic amplification factor for a suddenly applied load is 2, an intact floor below the level of collapse initiation could not have supported more than six floors. Since the number of floors above the level where the collapse initiated exceeded six for both towers (12 for WTC 1 and 29 for WTC 2), neither tower could have arrested the progression of collapse once collapse initiated. In reality, the highest intact floor was about three (WTC 2) to six (WTC 1) floors below the level of collapse initiation. Thus, more than the 12 to 29 floors reported above actually loaded the intact floor suddenly.